Ela Norm Preservers of Jordan Products

نویسندگان

  • BOJAN KUZMA
  • LEIBA RODMAN
چکیده

Norm preserver maps of Jordan product on the algebra Mn of n×n complex matrices are studied, with respect to various norms. A description of such surjective maps with respect to the Frobenius norm is obtained: Up to a suitable scaling and unitary similarity, they are given by one of the four standard maps (identity, transposition, complex conjugation, and conjugate transposition) on Mn, except for a set of normal matrices; on the exceptional set they are given by another standard map. For many other norms, it is proved that, after a suitable reduction, norm preserver maps of Jordan product transform every normal matrix to its scalar multiple, or to a scalar multiple of its conjugate transpose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero Product Preservers of C*-algebras

Let θ : A → B be a zero-product preserving bounded linear map between C*-algebras. Here neither A nor B is necessarily unital. In this note, we investigate when θ gives rise to a Jordan homomorphism. In particular, we show that A and B are isomorphic as Jordan algebras if θ is bijective and sends zero products of self-adjoint elements to zero products. They are isomorphic as C*-algebras if θ is...

متن کامل

Ela Euclidean and Circum-euclidean Distance Matrices: Characterizations and Linear Preservers

Short proofs are given to various characterizations of the (circum-)Euclidean squared distance matrices. Linear preserver problems related to these matrices are discussed.

متن کامل

Projection Inequalities and Their Linear Preservers

This paper introduces an inequality on vectors in $mathbb{R}^n$ which compares vectors in $mathbb{R}^n$ based on the $p$-norm of their projections on $mathbb{R}^k$ ($kleq n$). For $p>0$, we say $x$ is $d$-projectionally less than or equal to $y$ with respect to $p$-norm if $sum_{i=1}^kvert x_ivert^p$ is less than or equal to $ sum_{i=1}^kvert y_ivert^p$, for every $dleq kleq n$. For...

متن کامل

Ela Additive Preservers of Tensor Product of Rank One Hermitian Matrices

Let K be a field of characteristic not two or three with an involution and F be its fixed field. Let Hm be the F -vector space of all m-square Hermitian matrices over K. Let ρm denote the set of all rank-one matrices in Hm. In the tensor product space ⊗ k i=1 Hmi , let ⊗ k i=1 ρmi denote the set of all decomposable elements ⊗ k i=1 Ai such that Ai ∈ ρmi , i = 1, . . . , k. In this paper, additi...

متن کامل

Ela the Jordan

The relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011